Independent GHG Inventory Report Christchurch International Airport Limited Updated Basis of Preparation, FY2022-23

Executive Summary

This revised GHG inventory report represents the comprehensive greenhouse gas inventory for the fiscal year 2022-23 (FY23). In line with the Airport Carbon Accreditation (ACA) requisites, CIAL is required to provide a detailed carbon footprint encompassing the airport's scope 1, 2, and 3 emissions.

This document serves as that GHG inventory report and details the emission sources included in the GHG inventory, corresponding activity data, methodologies, assumptions, limitations and emission estimates, and organisational and operational boundaries.

In FY22, CIAL transitioned from categorising GHG emissions solely into scope 1, 2, and 3 to a reporting format that aligns with the categorisations outlined in ISO 14064-1:2019, as well as in accordance with the GHG Protocol's Scope 3 Standard.

Table 1 summarises the GHG inventory for FY23.

Table 1: GHG emissions by GHG Protocol scope and category in tonnes CO₂-e in FY23

Emission source	Tonnes CO ₂ -e (location-based)	Tonnes CO ₂ -e (market-based)
Scope 1: Direct GHG emissions	222	222
Scope 2: Indirect GHG emissions	1,062	0
Scope 3, category 1, purchased goods and services	1,064	1,064
Scope 3, category 2, capital goods	6,022.03	6,022.03
Scope 3, category 3, fuel- and energy-related activities	173	173
Scope 3, category 5, waste generated in operations	563	563
Scope 3, category 6, business travel	835.52	835.52
Scope 3, category 7, employee commuting	423	423
Scope 3, category 11, use of sold products	698,277	698,277
Scope 3, category 13, downstream leased assets	958	958
TOTAL	709,598	708,536

Conversio Pty Ltd ABN 48 608 618 677

PO Box 492 The Gap, QLD 4061 Australia

+61 (0) 432 080 251

info@conversio.com.au conversio.com.au

Contents

1.	1. Purpose of this document			
2.	2. Description of Christchurch International Airport 2			
3.	Rep	porting requirements 2		
4.	Me	thodology2		
	4.1	GHG accounting principles2		
	4.2	Standards and guidelines3		
	4.3	Emission factors		
	4.4	Method for calculating emissions		
	4.5	Rounding of amounts4		
5.	Org	anisational boundary and operational control approach4		
6.	Ор	erational boundary 5		
	6.1	Greenhouse gases5		
	6.2	Definition of scopes5		
	6.3	Data used for calculating GHG emissions and energy consumption		
	6.4	GHG inventory categories (assumptions/limitations/justifications)7		
	6.5	GHG emission sources not accounted for in GHG inventory 15		
7.	GH	G inventory15		
8.	Bas	e year selection and GHG emissions recalculation policy18		
	8.1	Base year selection		
	8.2	Recalculation policy		
	8.3	Changes in organisational boundary18		
	8.4	Changes in calculation methodology19		
	8.5	Discovery of significant errors19		

Table of tables

Table 1: GHG emissions by GHG Protocol scope and category in tonnesCO2-e in FY23
Table 2: GHG emissions by GHG Protocol scope and category in tonnesCO2-e in FY23
Table 3: Summary of method to estimate direct GHG emissions fromstationary and transport energy consumption
Table 4: Summary of method to estimate GHG emissions from fugitiveemissions
Table 5: Summary of method to estimate GHG emissions from de-icing 10
Table 6: Summary of method to estimate GHG emissions from imported energy
Table 7: Electricity purchased from the grid
Table 8: Summary of method to estimate emissions from wastepurchased goods and services
Table 9: Summary of method to estimate transmission and distributionlosses and EPD emissions12
Table 10: Summary of method to estimate emissions from wastedisposal to landfill12
Table 11: Summary of method to estimate GHG emissions from water and wastewater 12
Table 12: Summary of method to estimate GHG emissions frombusiness travel - accommodation
Table 13: Summary of method to estimate emissions from business air travel 13
Table 14: Summary of method to estimate emissions from (tenant)staff commute
Table 15: Summary of method to estimate indirect GHG emissions fromstationary and transport energy consumption
Table 16: GHG emissions breakdown15

1. Purpose of this document

Conversio has been engaged by Christchurch International Airport Limited ('CIAL') to prepare this greenhouse gas ('GHG') inventory report ('carbon footprint') for the reporting year 2022-23 ('FY23') to support CIAL to maintain their current Airport Carbon Accreditation at Level 5.

The ACA program is a global carbon management certification program for airports. It independently assesses and recognises the efforts of airports to measure, manage and reduce their GHG emissions through 7 levels of certification: 'Mapping' (Level 1), 'Reduction' (Level 2), 'Optimisation' (Level 3), 'Neutrality' (Level 3+), 'Transformation' (Level 4), 'Transition' (Level 4+), and Achievement (Level 5). CIAL is required to submit a GHG inventory annually of the airport's scope 1, 2 and 3 GHG emissions.

Additional requirements at Level 5 include

- the formulation of policy commitment to maintain net zero for Scope 1 and 2 CO₂-e emissions,
- an application that the airport must have already achieved reductions greater than 90% across Scope 1 and Scope 2, a commitment to net zero in Scope 1 & 2, and to bolster sector commitments and/or ISO net zero in Scope 3 by 2050,
- a GHG inventory, updated annually to demonstrate that Net Zero is maintained,
- the development of a carbon management plan which sets out the net zero trajectory and the measures required to achieve the target, and
- the development of a stakeholder partnership plan which details how the airport intends to bolster sector commitments to achieve net zero in scope 3.

This carbon footprint has been prepared in accordance with the requirements set out under the GHG Protocol's Corporate Standard and Corporate Value Chain (Scope 3) Standard, as well as the requirements set out under the ACA for Level 5 accreditation. Organisational and operational boundaries are set according to the GHG Protocol.

Table 2 summarises total GHG emissions for FY23.

Table 2: GHG emissions by GHG Protocol scope and category in tonnes CO₂-e in FY23

Emission source	Tonnes CO ₂ -e (location-based)	Tonnes CO ₂ -e (market-based)
Scope 1: Direct GHG emissions	222	222
Scope 2: Indirect GHG emissions	1,062	0
Scope 3, category 1, purchased goods and services	1,064	1,064
Scope 3, category 2, capital goods	6,022.03	6,022.03
Scope 3, category 3, fuel- and energy-related activities	173	173
Scope 3, category 5, waste generated in operations	563	563
Scope 3, category 6, business travel	835.52	835.52
Scope 3, category 7, employee commuting	423	423
Scope 3, category 11, use of sold products	698,277	698,277
Scope 3, category 13, downstream leased assets	958	958
TOTAL	709,598	708,536

2. Description of Christchurch International Airport

Christchurch Airport is located 10 kilometres northwest of Christchurch city centre, on the western city development edge and is a critical piece of significant national and regional infrastructure. CIAL is responsible for Christchurch Airport's efficient and safe operation and aims to provide the airport's diversity of users with modern, appropriate and competitive facilities and services. Ownership of CIAL is shared 75% by Christchurch City Holdings Limited and 25% by the New Zealand Government.

As the international gateway for Christchurch and the South Island, Christchurch Airport is a major hub and the busiest and most strategic air connection to the world's trade and tourism markets. The airport is New Zealand's second-largest airport, with 12 partner airlines coming from 25 destinations. It provides a significant contribution to both the Canterbury region and the South Island, with the total airport operation employing more than 6,500 employees across a diverse range of companies.

Total passenger numbers were 5.69 million, compared to 3.26 million in the prior year. Full year passenger numbers were 82.5% of pre-Covid levels (domestic 90.2% and international 60.0%), improving consistently through the year.

3. Reporting requirements

CIAL has been joined the ACA program at Level 2 in 2018 and upgraded to Level 4 in 2020. The ACA requires that emissions are reported in line with the GHG Protocol and that airports also identify where they have direct control over emissions (generally scope 1 and 2 emissions) and where they can guide or influence emissions from other organisations' activities and facilities (mainly scope 3).

As a requirement for accreditation at Level 5, CIAL needs to submit an annual carbon footprint of the airport's scope 1 and 2 emissions, as well as relevant scope 3 emissions. The ACA program recommends that all relevant data and information for establishing the GHG inventory be consolidated into a carbon footprint report. This document serves as that GHG inventory report. This report details the emission sources included in the GHG inventory, corresponding activity data, methodologies, assumptions, limitations and emission estimates, and organisational and operational boundaries.

A requirement of Level 5 accreditation is that the airport has achieved 90% or greater emissions reductions across scope 1 and scope 2 and that is maintained above 90% reductions against their baseline year (2015).

4. Methodology

4.1 GHG accounting principles

In estimating its GHG emissions, CIAL is guided by GHG accounting principles to monitor, report, and reduce its environmental impacts. These principles foster transparency and ensure data is reliable, complete, consistent, and accurate.

Key principles:

- Relevance:
 - Information should serve the decision-making needs of users.
 - Reflects GHG emissions and significant influences.
 - Considerations: organization's size, sector, GHG emissions level, stakeholder requirements.
- Materiality:
 - Pertains to the significance of data to users of the information.

- Encompasses the quantity and quality of GHG emissions.
- Ensure all significant GHG sources are reported and no material information is omitted.
- Significance:
 - Refers to the climate impact of an organization's GHG emissions.
 - Significant emissions should be measured, managed, and reduced.
 - Considerations: scale of GHG emissions, stakeholder influence, other factors.
- De Minimis:
 - Acknowledges minor emissions sources that may be impractical to measure with high precision.
 - Allows for estimation or exclusion of minor emissions from GHG reporting.
 - Should not lead to significant underestimation of total GHG emissions.

These principles are interrelated and should collectively ensure robust GHG reporting, accuracy and utility for decision-making.

4.2 Standards and guidelines

- The requirements set out in the ACA Application Manual, Issue 14, May 2023 (draft),
- The New Zealand Ministry for the Environment's Measuring Emissions: A Guide for Organisations, MfE Guide 2023 ('Detailed Guide 2023'),
- The relevant GHG Protocol standards and guidance, specifically the
 - Corporate Accounting and Reporting Standard (revised edition),
 - Corporate Value Chain (Scope 3) Accounting and Reporting Standard,
 - Technical Guidance for Calculating Scope 3 Emissions (version 1.0), and
 - Scope 2 Guidance.
- ISO 14064-3:2019 Specification with guidance for the verification and validation of greenhouse gas statements
- The guidance and recommendations set out under the
 - Airports International Council's Guidance Manual: Airport Greenhouse Gas Emissions Management, and
 - Airport Cooperative Research Program's Guidebook on Preparing Airport Greenhouse Gas Emissions Inventories.

4.3 Emission factors

In establishing the GHG inventory, Conversio used emission factors and calculation methodologies available in:

- The Detailed Guide 2023,
- The Airport Council International's <u>Airport Carbon and Emissions Reporting Tool</u> ('ACERT'), and
- The ICAO CORSIA CO₂ Estimation and Reporting Tool.
- Expenditure-based emission factors from the Australian Climate Active Carbon Neutral initiative.

4.4 Method for calculating emissions

Unless otherwise stated, the method for calculating GHG emissions associated with fuel and electricity consumption is as follows:

- Petrol consumption: Amount of the liquid fuel delivered for the facility during the year as evidenced by invoices issued by the vendor of the fuel;
- Diesel oil consumption: Amount of the liquid fuel delivered for the facility during the year as evidenced by invoices issued by the vendor of the fuel;
- Liquefied petroleum gas consumption: Amount of the liquid fuel delivered for the facility during the year as evidenced by invoices issued by the vendor of the fuel;
- Electricity consumption: Based on supplier invoices; and
- Refrigerant use: Based on amount topped up during reporting year as reported by supplier.

 Purchased goods and services and construction activities: NZD expenditure on goods and services and construction activities.

4.5 Rounding of amounts

If the amount for tonnes CO₂-e worked out under a carbon footprint is not a whole number, the number is rounded up to the next whole number if the number at the first decimal place equals or exceeds 5 and rounded down to the next whole number if the number at the first decimal place is less than 5.

5. Organisational boundary and operational control approach

The organisational boundary determines which parts of CIAL are included in the GHG inventory. In the context of airport operations, determining greatest authority to introduce operating, health and safety, and environmental policies can be complex. They may be dependent on the contractual relationship between various parties. In some circumstances, the greatest authority will rest with CIAL as the corporation with day-to-day on-site managerial responsibility. This, however, must be balanced against the ability to introduce operating and environmental policies, which can sometimes rest with the tenant.

Figure 1: Organisational boundary

CIAL has adopted the following position:

- Where tenants are separately metered and billed by the electricity or gas provider or sub-metered within the airport and have the ability to control their own energy use, these are treated as facilities outside CIAL's operational control;
- Where CIAL purchases electricity or gas from a provider and on-sells it to sub-metered tenants who have the ability to control their own energy use, the associated emissions are treated as being outside CIAL's operational control;
- Where sub-metered leased space is/becomes vacant, CIAL's assumes operational control until such time that space is leased by a tenant; and
- Where CIAL on-sell electricity but do not sub-meter electricity or gas, the associated emissions are treated as being within CIAL's operational control.

CIAL has also completed the construction of a hotel on its property. CIAL has adopted the following position in determining operational control:

• CIAL owns the hotel, which is branded as Novotel.

- Hind Management operates the hotel on CIAL's behalf, and invoices will be paid from CIAL accounts.
- This approach aligns with the above position of assuming operational control when CIAL is the entity paying for energy invoices.

6. Operational boundary

The operational boundary determines which emission sources will be quantified. Participation in the ACA program at Level 5 requires that all scope 1 (direct), scope 2 (indirect), and scope 3 (other indirect) emissions be reported.

6.1 Greenhouse gases

Emissions from carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and specified kinds of hydrofluorocarbons and (HFCs) are included in this GHG inventory. Emissions are measured in tonnes of carbon dioxide equivalent (t CO₂-e). The carbon dioxide equivalent (CO₂-e) allows the different greenhouse gases to be compared on a like-forlike basis relative to one unit of CO₂. CO₂-e is calculated by multiplying the emissions of each of the four GHGs covered in this report by its 100-year global warming potential (GWP) specified in the <u>IPCC's Fourth Assessment</u> <u>Report</u>.

6.2 Definition of scopes

The ACA program uses the GHG Protocol's operational boundary definitions for describing direct and indirect emissions. As such, scope 1, scope 2 and scope 3 are defined as per the GHG Protocol and the ACA Application Manual, Issue 14, page 25 (see also Scope 1: Direct GHG emissions that occur from sources that are owned and/or controlled by the airport, for example, emissions from combustion in owned or controlled boilers, furnaces, vehicles, etc.

Scope 2: Indirect GHG emissions that occur from the generation of purchased electricity, steam, heat or cooling consumed by the airport. Scope 2 emissions physically occur at the facility where purchased electricity is generated.

Scope 3: All other indirect emissions in the value chain of the airport operator that occur from sources not owned and/or controlled by the company (e.g. purchased goods and services, aircraft movements, vehicles and equipment operated by third parties, off-site waste management, etc.). Such sources can be located inside or outside the airport premises (geographical boundary). They include upstream emissions (Categories 1-8: indirect emissions related to purchased or acquired goods and services, if applicable) and downstream emissions (Categories 9-15: indirect emissions related to sold products and services, if applicable). The range of scope 3 emission sources has been expanded over time to respond to new evidence and reach compliance with various other international standards and recommendations (Figure 6).

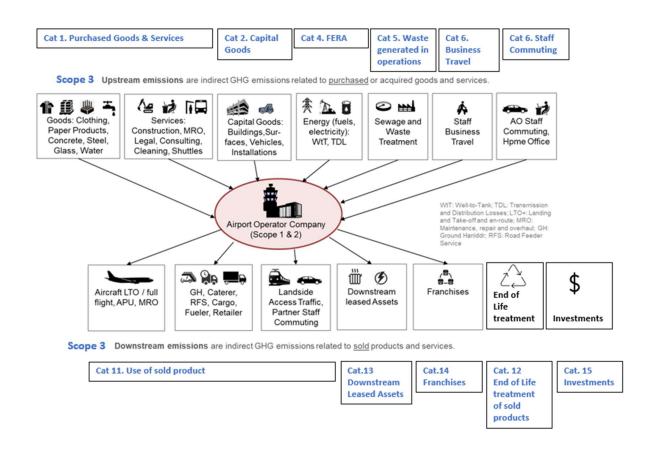
Scope 3 include only the direct emissions of sources not under the operational control of the airport operator, i.e. indirect emissions of emission sources not under control of the airport operator ("Scope 3 of Scope 3 sources") are not mandated to be reported, but can be reported on a voluntary basis if deemed reasonable.

Figure 2 for an overview of emission sources as per the ACA program):

Scope 1: Direct GHG emissions that occur from sources that are owned and/or controlled by the airport, for example, emissions from combustion in owned or controlled boilers, furnaces, vehicles, etc.

Scope 2: Indirect GHG emissions that occur from the generation of purchased electricity, steam, heat or cooling consumed by the airport. Scope 2 emissions physically occur at the facility where purchased electricity is generated.

Scope 3: All other indirect emissions in the value chain of the airport operator that occur from sources not owned and/or controlled by the company (e.g. purchased goods and services, aircraft movements, vehicles and equipment operated by third parties, off-site waste management, etc.). Such sources can be located inside or outside the airport premises (geographical boundary). They include upstream emissions (Categories 1-8: indirect emissions related to purchased or acquired goods and services, if applicable) and downstream emissions (Categories 9-15:


indirect emissions related to sold products and services, if applicable). The range of scope 3 emission sources has been expanded over time to respond to new evidence and reach compliance with various other international standards and recommendations (Figure 6).

Scope 3 include only the direct emissions of sources not under the operational control of the airport operator, i.e. indirect emissions of emission sources not under control of the airport operator ("Scope 3 of Scope 3 sources") are not mandated to be reported, but can be reported on a voluntary basis if deemed reasonable.

Figure 2: Emission sources at an airport

Figure 3: Up- and downstream scope 3 emissions

6.3 Data used for calculating GHG emissions and energy consumption

This GHG inventory is based on the best data available and emissions factors at time of compilation. The discussion of the individual emission sources includes references to the source documents and an outline of methodology and assumptions used in estimating emissions.

Data is aggregated by CIAL's accounting/finance and asset/sustainability teams.

Based on the data provided and methodologies applied, it is expected that the reported quantity of scope 1 and scope 2 GHG emissions is not significantly different to the true value.

CIAL respects tenants' legal rights to quiet enjoyment of tenancy and/or the need for information to remain commercial-in-confident, and therefore, cannot demand data. Instead, CIAL invites tenant and contractor participation in a voluntary data-sharing arrangement to estimate scope 3 GHG emissions where this information cannot be estimated using on-sold energy information.

This GHG inventory will be updated should more up-to-date or accurate methodologies and/or emission factors become available or if any significant errors (i.e. resulting in a difference in the reported GHG inventory of more than 5%) are identified.

6.4 GHG inventory categories (assumptions/limitations/justifications)

This report is based on calculations that also use the classification of GHG emission sources outlined in the GHG Protocol. Table 16: GHG emissions breakdownTable 16 in section 7 of this report summarises GHG emission

sources, GHG emission estimates, and categorisations per GHG Protocol to facilitate reporting to the ACA administrator.

GHG emissions have been aggregated into the following categories:

- Scope 1: Direct GHG emissions from
 - Stationary energy combustion
 - Mobile energy combustion
 - Fire training
 - Fugitive emissions from leakage
 - o De-icing
- Scope 2: Indirect GHG emissions
 - Grid-purchased electricity, CIAL
- Scope 3: Other indirect GHG emissions
 - Category 1: Purchased goods and services
 - Goods, cleaning, consumable products
 - Goods, de-icing (tenant)
 - Goods, maintenance, gardening
 - Goods, print & stationery
 - Goods, uniforms and protective clothing
 - Goods, water supply
 - Professional services, accounting, legal, and audit
 - Professional services, consulting fees
 - Professional services, ICT data, internet, and cloud services
 - Professional services, insurance
 - Categtory 2: Capital goods
 - Construction, car parking
 - Construction, sealed surfaces
 - Construction, building structures
 - Construction, terminal, lighting
 - Vehicles
 - Category 3: Fuel- and energy-related emissions not included in scope 1 or scope 2
 - Extraction, production, and distribution of fuels, diesel
 - Extraction, production, and distribution of fuels, LPG
 - Extraction, production, and distribution of fuels, petrol
 - Transmission and distribution losses, electricity
 - Category 5: Waste generated in operations
 - Waste to landfill
 - Wastewater
 - Category 6: Business travel

0

0

- Accommodation, by country of travel
- Air travel, by class of air travel and flight type (international or domestic)
- Category 7: Employee commuting
 - Working from home
 - Third party staff commute
- Category 11: Use of sold products
 - APU usage, large aircraft
 - APU usage, small-medium aircraft
 - Engine run-ups, aircraft with aviation gasoline
 - Engine run-ups, double-aisle aircraft with kerosene
 - Engine run-ups, single-aisle aircraft with kerosene
 - Full flight emissions, departing flights
 - Tenant/contractor vehicles
 - Ground access, busses and shuttles
 - Ground access, cars and taxis

Category 13: Downstream leased assets

0

- Stationary energy, on-sold electricity
- Stationary energy, on-sold LPG
- Transport energy, diesel

Achieving a complete GHG inventory can require using less accurate or complete indirect/scope 3-related data, affecting accuracy and completeness. It can be difficult to determine or verify the source and quality of indirect/scope 3 emissions data supplied by third parties, etc. This GHG inventory is considered to have achieved a sufficiently robust and balanced trade-off between tracking and reporting indirect/scope 3 GHG emissions.

6.4.1 Scope 1: Direct GHG emissions from stationary and transport energy consumption, including fire training

The GHG inventory accounts for direct GHG emissions from diesel and petrol consumption and fire training (LPG, wood).

- Fuels used for transport energy purposes produce slightly different methane and nitrous oxide emissions than if the same fuels were used for stationary energy purposes. Whether fuel is accounted for as fuel for stationary or transport purposes is based on whether fuels are used to move a vehicle.
- Petrol and diesel premium products have been accounted for using the default emission factors for petrol and diesel. The resulting difference is negligible and does not constitute a risk of material misstatement.
- It is noted that in the Detailed Guide 2023, emission factors for fuel consumption are provided at a higher level (i.e., kg CO₂-e/litre) than those for scope 3 travel emission factors (kg CO₂-e/km based on vehicle age, engine size and engine type of vehicle).
- LPG has been accounted for as stationary combustion of LPG for commercial use.

Emissions calculation approach	Total GHG emissions (t CO ₂ -e) = [fuel consumed (litres/kg)] x [fuel type emissions factor (per litre/kg)]	
Activity data source	 FY23 Figures.xlsx Carbon Emissions Source Data.xlsx LPG and Co2 usage FY23.xlsx 	
Activity data	 Fuels used by CIAL, fuel consumption under CIAL's operational control Total CO₂ in fire extinguishers 	
Emissions factors	Detailed Guide 2023, Tables 3 & 4	

Table 3: Summary of method to estimate direct GHG emissions from stationary and transport energy consumption

6.4.2 Scope 1: Direct GHG emissions from fugitive emissions

CIAL voluntarily accounts for fugitive emissions (losses) from refrigerants for commercial air conditioning. These losses typically arise from gradual leaks during normal operation, losses during service and maintenance, major equipment failures, or decommissioning. Losses considered in this GHG inventory are from gradual leaks during normal operation. The estimation of stock HCFCs, HFCs, and SF₆ contained in any equipment would be based on the stated capacity of the equipment according to the manufacturer's nameplate. Losses considered in this GHG inventory are those from an estimated annual leakage rate (i.e., gradual leaks during normal operation).

Emissions calculation approach	Total GHG emissions (t CO ₂ -e) = [refrigerant(kg) x [GWP(kg)]/1,000*[leakage rate]
Activity data source	LPG and Co2 usage FY23.xlsx
Activity data	List of air-conditioning units under operational control of CIAL, refrigerant types, and refrigerant volumes
GWP and leakage rates	Detailed Guide 2023, Tables B1 & B2, IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System

Table 4: Summary of method to estimate GHG emissions from fugitive emissions

6.4.3 Scope 1: Direct GHG emissions from de-icing

GHG emission sources included are fire extinguishers used in fire training and de-icing under the operational control of CIAL. Activity data has been entered into the ACERT and the corresponding GHG emissions estimate transferred into the calculation spreadsheet.

Table 5: Summary	of method t	o estimate	GHG er	missions fr	om de-icing
Tubic 5. Summur		o countate		1113310113 11	onn ac henng

Emissions calculation approach	Total GHG emissions (t CO ₂ -e) = [product used (litre/kg)] x [emission factor (per litre/kg)]
Activity data source	RE Y23 GHG Inventory De-icing (non-plane) - Due 22nd July.msg
Activity data	Amount of de-icing chemicals used
Emission factors	ACERT methodology

6.4.4 Scope 2: Indirect GHG emissions from grid-purchased electricity

GHG emissions estimates associated with grid-purchased electricity are based on total grid-electricity delivered to CIAL facilities as evidenced by meters and utility invoices minus electricity on-charged to tenants.

Emission sources include grid-purchased electricity for the passenger terminal, AFS/IOC, the Novotel, as well as miscellaneous smaller sources, and transmission and distribution losses. This also includes electricity used for water pumps (ICPs can be isolated).

Information on electricity purchased by tenants directly from a supplier was not available. CIAL respects tenants' rights to quiet enjoyment of tenancy and/or the need for information to remain commercial-in-confidence, and, therefore, cannot demand data. Instead, CIAL invites tenant and contractor participation in a voluntary data sharing arrangement to estimate scope 3 GHG emissions where this information cannot be estimated using on-sold energy information.

Emissions calculation approach	Total GHG emissions (t CO_2 -e) = [electricity consumed (kWh)] x [Electricity grid emission factor (per kWh)]	
Activity data source	New Approach FY23.xlsx	
Activity data	Grid-purchased electricity by CIAL.Electricity on-charged to tenants.	
Emissions factors	Detailed Guide 2023, Tables 9 & 12	

Table 6: Summary of method to estimate GHG emissions from imported energy

The ACA program requires airports that operate in markets with access to contractual agreements to report scope GHG emissions using both the location-based and market-based approaches. The location-based approach uses the average emission factor specific to the grid on which the energy consumption occurs. In the case of CIAL, this is the New Zealand grid. As such, the scope 2 emission factor for purchased electricity is the same as the one in section 5.2 of the Detailed Guide 2023, see Table 7.

Table 7: Electricity purchased from the grid

Emission source	Scope	Unit	kg CO2-e/unit
Purchased electricity (location-based)	2	kWh	0.0991
Purchased electricity (market-based)			
NZECS certificates	2	kWh	0.000
NZECS certificates	2	kWh	0.000
Transmission and distribution losses for electricity3kWh0.00860		0.00860	

The market-based method reflects emissions from electricity purchases that companies have purposefully chosen in form of contractual instruments, such as green power options, renewable energy certificates ('REC's), carbon neutral electricity options, direct energy supply contracts, supplier-specific emission factors, or other emission factors representing the untracked or unclaimed energy and emissions (residual mix).

6.4.5 Scope 3, Category 1: Purchased goods and services

CIAL accounts for GHG emissions associated with purchased goods and services. In doing so, CIAL uses an input/output (I/O) approach. The input-output (IO) methodology, also known as the expenditure-based approach, is widely used in GHG accounting. It is an economic model that describes the interdependencies between different branches of a national or regional economy. Despite its extensive use and certain benefits, the IO methodology presents significant challenges when applied in GHG accounting:

- Aggregation bias: The IO model's high degree of aggregation can lead to inaccuracies. Diverse industries are
 often lumped together, which may result in over- or underestimation of GHG emissions due to variations
 within sectors.
- Temporal resolution deficit: The annual production of IO tables cannot account for short-term or seasonal changes in activities, possibly missing significant fluctuations in emissions.
- Technological change negligence: The model assumes uniform technology usage across sectors, overlooking actual variations and advancements that impact emissions.
- Geographical limitations: The model often falls short in accurately capturing emissions related to imported goods due to its reliance on national economic data, disregarding the complexity of international supply chains with varied energy efficiencies and emission factors.

CIAL is aware of these limitations and the inherent challenges of the I/O methodology. It recognises that the model provides an approximate estimate, rather than a precise calculation of GHG emissions. It is currently in use as a provisional measure while efforts are made to engage critical stakeholders for acquiring more accurate GHG emissions (intensity) data for purchased goods and services. This approach, once fully realised, will lead to a more robust and precise accounting of GHG emissions.

Emissions calculation approach	Total GHG emissions (t CO ₂ -e) = [total expenditure on item (\$)] x [emissions factor (CO2- $e/$ \$)]
Activity data source	Draft P&L FY2023.xlsx
Activity data	Expenditure on items
Emissions factors	Climate Active GHG emission factors for professional services, construction, and products

Table 8: Summary of method to estimate emissions from waste purchased goods and services

6.4.6 Scope 3, Category 3: Fuel- and energy-related emissions not included in scope 1 or scope 2

Transmission and distribution losses

GHG emissions estimates associated with grid-purchased electricity on-charged are based on total grid-electricity delivered to CIAL facilities as evidenced by meters and utility invoices.

GHG emissions estimates associated with LPG consumption are based on LPG recovered from tenants.

Emission sources include grid-purchased electricity for the passenger terminal, AFS/IOC, the Novotel, as well as miscellaneous smaller sources, and transmission and distribution losses. This also includes electricity used for water pumps (ICPs can be isolated).

Emissions associated with the extraction, production, and distribution are based on all fuel consumption on campus. New Zealand does not publish such emission factors; CIAL uses the Australian emission factor as proxy.

Information on electricity and fuels purchased by tenants directly from a supplier was not available. CIAL respects tenants' rights to quiet enjoyment of tenancy and/or the need for information to remain commercial-in-confidence, and, therefore, cannot demand data. Instead, CIAL invites tenant and contractor participation in a voluntary data sharing arrangement to estimate scope 3 GHG emissions where this information cannot be estimated using on-sold energy information.

Table 9: Summary of method to estimate transmission and distribution losses and EPD emissions

Emissions calculation approach	 Total T&D losses GHG emissions (t CO₂-e) = [electricity consumed (kWh)] x [Electricity T&D loss emissions factor (per kWh)] Total EPD GHG emissions (t CO₂-e) = [fuel consumed (GJ/kL)] x [EPD emissions factor (kg CO₂-e/GJ)] 	
Activity data source	New Approach FY23.xlsx	
Activity data	 For transmission and distribution losses, sum of all grid-purchased electricity. For extraction, production, and distribution of fuels, sum of all fuels 	
Emissions factors	Detailed Guide 2023, Tables 9 & 12 and NGA Factors 2022	

6.4.7 Scope 3, Category 5: Waste generated in operations

Waste disposal to landfill

Waste disposal to landfill does not include recycling or document management (which have been assigned a zeroemission factor). Organic was not assumed to be collected separately. CIAL waste to landfill is classified as commercial waste.

Table 10: Summary of method to estimate emissions from waste disposal to landfill

Emissions calculation approach	Total GHG emissions (t CO ₂ -e) = [total mass of waste (t))] x [emissions factor]
Activity data source	Waste to Landfall FY23 - Evie Cookson.xlsx
Activity data	Tonnes of waste picked up by contractor.
Emissions factors	Detailed Guide 2023, Table 73

Water and wastewater

GHG emissions from water and wastewater treatment include activities as they relate to sourcing water, its treatment, transmission, and reticulation components of the water supply network.

Table 11: Summary of method to estimate GHG emissions from water and wastewater

Emissions calculation approach	roach Total GHG emissions (t CO_2e) = [Total volume of water consumption] x [water supply a wastewater treatment emissions factor]			
Activity data source	RE GHG Inventory Trade waste from Y23.msg			
Activity data	Total litres of water supplied and sent to wastewater treatment plants.			
Emissions factors	Detailed Guide 2023, Tables 65 & 66			

6.4.8 Scope 3, Category 6: Business travel

Staff business travel – accommodation

Hotel stay emissions are based on travel data provided by CIAL. The number of room nights (number of rooms booked, not number of guests) is then multiplied by a country-specific GHG emission factor.

Emissions calculation approach	Total GHG emissions (t CO ₂ -e) = [Hotel night stays per country] x [Hotel stay emissions factor]		
Activity data source	NW Carbon Emissions Source Data FY22 Final.xlsx		
Activity data	Room.nights in country		
Emissions factors	Detailed Guide 2023, Table 44		

Table 12: Summary of method to estimate GHG emissions from business travel - accommodation

Staff business travel – Air travel

CIAL uses its travel management system and city pair data to estimate the flight distance. 'City pairs' refers to the flight's origin and destination cities. After calculating the distance between city pairs, an emissions estimate per kilometre per passenger is applied, giving an approximate amount of GHG emissions per passenger for each kilometre of flight. This result is then multiplied by 1.9 to account for radiative forcing effects.

Emissions calculation approach	Total GHG emissions (t CO_2e) = [distance flown (city pair)] x [emission factor (kg CO_2-e/pkm)]			
Activity data source	NW Carbon Emissions Source Data FY22 Final.xlsx			
Activity data	Carbon Emissions Source Data.xlsx			
Emissions factors	Detailed Guide 2023, Tables 37 & 42			

Table 13: Summary of method to estimate emissions from business air travel

6.4.9 Scope 3, Category 7: Employee commuting

The data pertaining to staff and tenant staff commutes is gathered based on the information made available to CIAL. This includes details such as the modes of transportation used, the frequency of commutes, and the approximate distances travelled. Given the variations in individual commute patterns, this data is necessarily an estimate.

Table 14: Summary of method to estimate emissions from (tenant) staff commute

Emissions calculation approach	Total GHG emissions (t CO ₂ e) = [distance flown (city pair)] x [emission factor (kg CO ₂ - e/pkm)]		
Activity data source	CIAL and tenant FTE as entered in to the ACERT		
Activity data	Number of (tenant) staff		
Emissions factors	ACERT		

6.4.10 Scope 3, Category 11: Use of Sold products

Due to the multifaceted nature of airport operations, CIAL opts to report on certain aircraft- and airport-specific emission sources in a distinct category, as allowed by the Scope 3 Guidance. This categorisation aids in providing a more comprehensive and detailed understanding of the airport's total emissions.

Emission sources included in this distinct category are full flight emissions - covering the entire journey of flights departing from the airport, Auxiliary Power Unit (APU) usage - which are the systems that provide energy for functions other than propulsion, and engine run-up testing, which involves running the engines at high power levels on the ground for testing and maintenance purposes.

CIAL has updated its methodology for calculating full flight emissions to better align with the Airport Carbon Accreditation (ACA) requirements. Previously, the calculation included all flights both departing and arriving at the airport, taking 50% of the total emissions to account for the shared responsibility with the destination airports.

The revised methodology considers only the flights departing from the airport, adhering more closely to the ACA's expectations and providing a clearer accountability for emissions directly linked to CIAL's operations.

In addition, a 1.9 multiplier is now applied to the full flight emissions calculation. This factor is used to account for radiative forcing effects of aviation, such as contrails and cirrus cloud formation, which significantly amplify the total climate impact of the flight.

CIAL's full flight emissions are calculated based on the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) Central Emissions Estimation Tool (CERT). This tool is designed specifically for aviation and is recognised for its accuracy and comprehensive approach.

Moreover, emissions from APU usage and engine run-up testing are estimated using the ACERT.

In addition, ground access emissions from buses and cars are also included, capturing the transportation emissions linked to the airport's operations but not directly controlled by CIAL. These considerations ensure a more extensive coverage of emissions resulting from CIAL's activities, enhancing the accuracy of the GHG inventory and effectiveness of reduction strategies.

Additional assumptions:

- Fixed-wing aircraft with a maximum take-off weight ('MTOW') over 5,700kg: Used the ICAO CORSIA CERT. Fullflight (departure only, from NZCH) method used for MTOW over 5,700kg, apportioned 75% of emissions for MTOW less than 5,700kg and helicopters.
- Fixed-wing aircraft MTOW < 5,700kg: Used specific fuel consumption rating for each engine (or similar engine), total engine horsepower, total engine run time (hours, calculated based on route and aircraft cruise speed), and average throttle setting across entire engine run (percentage) to estimate emissions.
- Helicopters: Methodology under development as CIAL does not collect helicopter movement data on a regular basis. As helicopters don't need to operate from an aerodrome, often the route data is incomplete, a flight time value of one hour is assumed. Also estimated is the average throttle setting of 75%.
- Electrified power supply (i.e., GPU usage) is included in scope 2 GHG emission estimate. APU usage assumes an average duration of APU operation before and after flights of 30 minutes for both small-medium and large aircraft. CIAL uses the ACERT to estimate this emission source. Average duration is entered under item 7.2 of the ACERT.

Emissions calculation approach	Total GHG emissions (t CO ₂ -e) = [fuel consumed (litres/kg)] x [emissions factor (per litre/kg)]				
Activity data source	 Ground Access data FY23.xlsx ACERT_Tool_v6 FY23.xlsx FY2023 Engine Tests Summary Data.xlsx Full Flight Emissions FY23 Departures Only.xlsx 				
Activity data	 CIAL flight data Aircraft movements and type of aircraft Number of engine run-ups Flight segments, i.e. origin and destination airports 				
Emissions factors	Detailed Guide 2023, Tables 3 & 4, 6, 38 & 49, ACERT, and ICAO CORSIA CERT				

6.4.11 Scope 3, Category 13: Downstream leased assets

The "downstream leased assets" category under Scope 3 emissions encompasses all tenant activities occurring within or on the assets they lease. Given the complex nature of airport operations, with a multitude of independent entities operating on the airport premises, this category is the most suitable for capturing the relevant emissions data.

In the case of CIAL, the specific emission sources considered under downstream leased assets include on-sold electricity and LPG used for stationary energy purposes, as well as diesel for transport purposes. Thus, this category captures emissions not only from the direct operation of the leased assets, but also from the energy used within these assets and the transportation associated with these leased activities.

The method to estimate corresponding emissions is the same as those outlined in Table 3 and Table 7.

6.5 GHG emission sources not accounted for in GHG inventory

The following emission sources have not been estimated in the carbon footprint:

- Stored CO₂ in fire extinguishers other than those used for fire training The contribution of this emission source to the total carbon footprint is de minimis.
- SF₆ CIAL is not aware of any SF₆ sources being used in airport operations.

7. GHG inventory

This GHG inventory is based on the best data available at time of compilation. Based on the data provided and methodologies applied, it is expected that the reported quantity of GHG emissions is not significantly different to the true value.

This GHG inventory will be updated should more up-to-date or accurate data, methodologies, and/or emission factors become available or if any significant errors (i.e., resulting in a difference in the reported GHG inventory of more than 10%) are identified.

Table 16: GHG emissions breakdown

Emission source	Scope	Category	Tonnes CO ₂ -e	% of total GHG inventory
Stationary combustion, diesel	1		128.93	0.02%
Stationary combustion, LPG	1		7.53	0.00%
Mobile combustion, diesel	1		57.93	0.01%
Mobile combustion, petrol	1		14.17	0.00%
Fire training, fire extinguishers	1		0.00	0.00%
Fire training, LPG	1		3.11	0.00%
Fugitive emissions, R1234ze	1		0.00	0.00%
Fugitive emissions, R22	1		0.15	0.00%
Fugitive emissions, R417A	1		9.31	0.00%
De-icing	1		0.50	0.00%
Grid-purchased electricity (market- based)	2		0.00	0.00%
Insurance	3	1	288.40	0.04%

Emission source	Scope	Category	Tonnes CO ₂ -e	% of total GHG inventory
Consultant fees	3	1	283.37	0.04%
Accounting, audit, and legal	3	1	151.07	0.02%
ICT data, internet, and cloud services	3	1	116.06	0.02%
Maintenance, gardening	3	1	106.05	0.01%
Uniforms and protective clothing	3	1	11.85	0.00%
Print & stationery	3	1	29.10	0.00%
Cleaning, consumable products	3	1	20.24	0.00%
De-icing (tenant)	3	1	23.98	0.00%
Water supply	3	1	33.62	0.00%
Building Structures (Embodied Carbon)	3	2	4,489.18	0.63%
Sealed surfaces (Embodied Carbon)	3	2	1,019.43	0.14%
Terminal, lighting (Embodied Carbon)	3	2	423.75	0.06%
Operating surfaces, airside, road, parking	3	2	89.67	0.01%
Vehicles	3	2	62.24	0.01%
Electricity, transmission & distribution	3	3	167.47	0.02%
Diesel, extraction, production, & distribution	3	3	4.74	0.00%
Petrol, extraction, production, & distribution	3	3	0.10	0.00%
LPG, extraction, production, & distribution	3	3	0.36	0.00%
Waste to landfill	3	5	100.88	0.01%
Wastewater	3	5	462.16	0.07%
International, long-haul, business	3	6	487.40	0.07%
International, short-haul, business	3	6	45.05	0.01%
International, long-haul, economy	3	6	49.76	0.01%
International, short-haul, economy	3	6	55.47	0.01%
International, long-haul, premium economy	3	6	13.37	0.00%
Domestic, national average	3	6	164.50	0.02%
New Zealand, accommodation	3	6	3.45	0.00%
Australia, accommodation	3	6	3.55	0.00%
Singapore, accommodation	3	6	0.22	0.00%
Qatar, accommodation	3	6	0.40	0.00%
China, accommodation	3	6	3.02	0.00%

Independent GHG Inventory Report Christchurch International Airport Limited Updated Basis of Preparation, FY2022-23

Emission source	Scope	Category	Tonnes CO ₂ -e	% of total GHG inventory
Hong Kong, accommodation	3	6	0.75	0.00%
Germany, accommodation	3	6	0.35	0.00%
Japan, accommodation	3	6	1.14	0.00%
Netherlands, accommodation	3	6	0.16	0.00%
UAE, accommodation	3	6	1.09	0.00%
UK, accommodation	3	6	0.31	0.00%
US, accommodation	3	6	1.39	0.00%
Malaysia, accommodation	3	6	1.53	0.00%
Taiwan, accommodation	3	6	0.69	0.00%
India, accommodation	3	6	0.63	0.00%
France, accommodation	3	6	0.04	0.00%
Sweden, accommodation	3	6	0.14	0.00%
Denmark, accommodation	3	6	0.02	0.00%
Thailand, accommodation	3	6	0.85	0.00%
Fiji, accommodation	3	6	0.21	0.00%
Belgium, accommodation	3	6	0.04	0.00%
Airport operator staff commute	3	7	422.17	0.06%
Airport staff, working from home	3	7	0.36	0.00%
Full flight	3	11	676,897.80	95.39%
Auxiliary power unit usage, small to medium aircraft	3	11	1,336.40	0.19%
Auxiliary power unit usage, large aircraft	3	11	219.30	0.03%
Engine run-ups, avgas	3	11	2.45	0.00%
Engine run-ups, single-aisle aircraft with kerosene	3	11	212.60	0.03%
Engine run-ups, double-aisle aircraft with kerosene	3	11	8.57	0.00%
Tenant staff, visitor vehicles	3	11	203.35	0.03%
Buses, shuttles	3	11	120.67	0.02%
Cars, taxis	3	11	19,275.98	2.72%
Electricity, stationary energy	3	13	382.22	0.05%
LPG, stationary energy	3	13	48.85	0.01%
Diesel, stationary energy	3	13	526.56	0.07%

8. Base year selection and GHG emissions recalculation policy

8.1 Base year selection

CIAL's selection of base year for the purpose of its GHG emissions inventory is 2015. The basis for the choice of 2015 as the base year is that it is the most comparative GHG emissions data collected, and for which the GHG emissions will be able to be recalculated in later years (if needed), as required by ISO 14064-1, to enable a meaningful and consistent comparison of GHG emissions over time.

8.2 Recalculation policy

To enable a meaningful and consistent comparison of later years' GHG emissions against those of 2015, CIAL requires that a GHG inventory be recalculated in later years, as needed, to account for the following:

- 1. any structural changes to the organisation, where these include acquisitions and divestments, and the outsourcing and insourcing of GHG-emitting activities;
- 2. changes in GHG emissions calculation methodology that would result in a significant change to the GHG emissions figure; and
- 3. the discovery of an error, or a number of cumulative errors, that would have a significant impact on the GHG inventory.

8.3 Changes in organisational boundary

In general, GHG inventories are not recalculated for organic growth or decline. According to the GHG Protocol, "organic growth/decline refers to increases or decreases in production output, changes in product mix, and closures and openings of operating units that are owned or controlled by the company". Similarly, ISO 14064-1 states that organisations "shall not recalculate its base-year GHG inventory to account for changes in facility production levels, including the closing or opening of facilities".

The reason for this is that organic growth or decline results in a change of emissions to the atmosphere (as opposed to a mere transfer of emissions from one company's inventory to another in the case of a change in organisational structure) and therefore should be counted as an increase or decrease in CIAL's emissions profile over time.

However, the ACA has different requirements, which are outlined in the ACA Application Manual. To facilitate a like-with-like comparison of the three-year rolling average over time

- "In the case of divestment, the airport shall re-calculate the footprint for the past three years excluding the emissions from the asset which has been divested. These new historical emissions shall be used to calculate the average against which the current year's performance will be compared."
- "In the case of an airport investing in new assets, there will be a period of time where there is not sufficient data to provide a like-for-like comparison against their historical carbon footprints. To balance between the programme's wish to see the impact of the new asset as early as possible and this lack of historical data, until a new asset has been in operation for two full years, the emissions of the new asset shall be reported separately, not as part of the airport's main carbon footprint. Consequently, to identify reductions, only the emissions from the pre-existing asset will be compared to the airport's historical emissions. This will ensure a like-for-like comparison. Once the new asset has been in operation for more than two full years, its emissions data shall be included in the comparison using one of the two approaches set out [in section 8.9 of the ACA Application Manual."

When CIAL replaces an asset without a significant change to its operational boundary (e.g., an old cooling system with a new one), this is not defined as an investment or divestment for the purposes of ACA reporting.

8.4 Changes in calculation methodology

It is expected, and encouraged, that improvements to GHG emissions calculations will be made over time. Examples of improvements may include the use of a more accurate emission factor or the addition to the inventory of emissions sources that had previously been considered insignificant. When such improvements are made, the reason for the resulting change in emissions must be documented. Documentation should include details of the new emissions calculation methods used and/or new emissions sources added, any assumptions made, and those parties involved in the decision to make the change.

8.5 Discovery of significant errors

CIAL's GHG inventories will be recalculated in the case of the discovery of an error or a number of cumulative errors that would result in a significant change in the estimate of GHG emissions being reported. The need to recalculate the current or previous years' GHG inventories is based on determining whether the error(s) result(s) in a change (increase or decrease) in the reported GHG emissions of 10% or more.